skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ye, Jinhe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We considerG, a linear algebraic group defined over$$\Bbbk $$, an algebraically closed field (ACF). By considering$$\Bbbk $$as an embedded residue field of an algebraically closed valued fieldK, we can associate to it a compactG-space$$S^\mu _G(\Bbbk )$$consisting of$$\mu $$-types onG. We show that for each$$p_\mu \in S^\mu _G(\Bbbk )$$,$$\mathrm {Stab}^\mu (p)=\mathrm {Stab}\left (p_\mu \right )$$is a solvable infinite algebraic group when$$p_\mu $$is centered at infinity and residually algebraic. Moreover, we give a description of the dimension of$$\mathrm {Stab}\left (p_\mu \right )$$in terms of the dimension ofp. 
    more » « less